CLINICAL EVALUATION OF A PIEZORESISTIVE-SENSOR-EQUIPPED RAPID-EXCHANGE PRESSURE MICROCATHETER SYSTEM FOR FRACTIONAL FLOW RESERVE MEASUREMENT

SUPREME STUDY

Chenguang Li¹, Junqing Yang², Shaohong Dong³, Liang Dong⁴, Jiyan Chen², Li Shen¹, Changling Li⁴, Huadong LIU³, Xinyang Hu⁴, William Kongto Hau⁵, Allen Jeremias⁶, Jianan Wang⁴, Junbo Ge¹

¹Zhongshan Hospital, Fudan University, Shanghai, China; ²Guangdong Provincial People's Hospital, Guangdong, China; ³Shenzhen People's Hospital, Guangdong, China; ⁴The Second Affiliated Hospital, Zhejiang University School of

Medicine, Zhejiang, China; ⁵The Chinese University of Hong Kong, Hong Kong, China;

^eThe Chinese University of Hong Kong, Hong Kong, China; ^eSt. Francis Hospital, Roslyn, New York, USA

BACKGROUND

Major limitations for conventional FFR measurement using a pressure wire (PW) include the suboptimal handling characteristics and needs for occasional disconnecting and reconnecting of the PW. To address these limitations, a piezoresistive-sensor equipped pressure microcatheter (PMC), with a profile as small as 0.0205" and capable of accommodating any 0.014" guidewire, was developed

METHODS

A total of 239 patients with intermediate (visually 30-70%) coronary stenoses were enrolled at four centers. FFR was measured first with the PMC over a PW, then with the PW alone. Stenoses with PW FFR≤0.80 were regarded as functionally significant. The primary endpoint was the Bland-Altman mean bias between the FFR of PMC and PW systems. Secondary endpoints included correlation, diagnostic accuracy, receiver operating characteristic (ROC), and drift.

Drift compared with those of pressure wire

• AUC=0.979;

- Optimal cutoff for FFR microcatheter: 0.80
- Sensitivity: 91.3% 95% CI :[79.2% to 97.6]
- Specificity: 94.0% 95% CI: [89.5% to 97.0%]
- No serious adverse events occurred.

RESULTS

Results: From 239 patients, data of 224 patients (229 vessels) were approved by the core lab for per-protocol analysis. Quantitative coronary angiography showed that 17.9% vessels had diameters <2.5mm, and 55.9% vessels had stenoses >50%. The Bland-Altman bias between the two systems was -0.01 (p<0.0001) with [-0.08, 0.06] 95% limits of agreement. The Pearson correlation coefficient was 0.921 (p<0.0001). Using PW FFR≤0.80 as cutoff, the PMC per-vessel diagnostic accuracy was 93.4% [95% confidence interval: 89.4%-96.3%]; when considering the grey zone, there was no clinically meaningful diagnostic discordance in 99.6% of the cases, with both PW FFR and PMC FFR ≥ 0.75 or ≤ 0.80 . The ROC curve showed the optimal cutoff is 0.80, with an area under the curve of 0.979 (p<0.0001). The PMC success rate was similar to PW (97.5% vs 96.3%, p=0.43) with no serious adverse event and had 51.6% less frequent clinically significant drift (CSD.defined as absolute drift >0.03) compared to PW (7.4% vs 15.3%, p=0.004).

CONCLUSION

Our study shows the novel PMC has minimal bias equal to the resolution of the current FFR systems (-0.01) and has high diagnostic accuracy (93.4%). This high accuracy, lower CSD frequency, and rapid-exchange nature make the PMC an attractive tool for coronary physiology assessment.

Disclosure INFORMATION

All authors have no personal relationships to disclose. This study is sponsored by Insight Liftech.

For any question or comment, please email to li.chenguang@outlook.com